int(0)
Реклама


Solid-state drive

2,5" SSD-накопитель 2010 года с интерфейсом SATA II, использовавшийся в ноутбуках и компьютерах
SSD ADATA IM2S3138E-128GM-B с интерфейсом M.2 (ключи B и M)
SSD с интерфейсом SATA III с переходником для установки в 3,5"-й отсек системного блока
Внешний жёсткий диск с SSD mSATA в комплекте с адаптером на USB 3.0 и корпусом
HGST SN150 1,6 ТБ, твёрдотельный NVMe-совместимый накопитель в форм-факторе платы PCI-E

Твердотельный накопитель (англ. Solid-State Drive, SSD) — компьютерное энергонезависимое немеханическое запоминающее устройство на основе микросхем памяти, альтернатива HDD. Кроме микросхем памяти, SSD содержит управляющий контроллер. Наиболее распространённый вид твердотельных накопителей использует для хранения информации флеш-память типа NAND, однако существуют варианты, в которых накопитель создаётся на базе DRAM-памяти, снабжённой дополнительным источником питания — аккумулятором[1].

В настоящее время твердотельные накопители используются как в носимых (ноутбуках, нетбуках, планшетах), так и в стационарных компьютерах для повышения производительности. На 2016 год наиболее производительными выступали SSD формата M.2 с интерфейсом NVMe, у которых при подходящем подключении скорость записи/чтения данных могла достигать 3800 мегабайт в секунду[2].

По сравнению с традиционными жёсткими дисками (HDD) твердотельные накопители имеют меньший размер и вес, являются беззвучными, а также многократно более устойчивы к повреждениям (например, к падению) и имеют гораздо бóльшую скорость произвольных операций. В то же время, они имеют в несколько раз бóльшую стоимость в расчёте на гигабайт и меньшую износостойкость (ресурс записи)[источник не указан 878 дней].

Описание[ | код]

SSD представляют собой устройства, хранящие данные в микросхемах вместо вращающихся металлических дисков или магнитных лент. Причина их появления отражает тот факт, что скорость обработки данных в процессоре намного превышает скорость записи данных в HDD. Магнитные диски на протяжении десятилетий доминировали в корпоративном сегменте хранения данных, за это время (с 1950-х) ёмкость носителей выросла в двести тысяч раз, скорость работы процессоров тоже сильно возросла, но скорость доступа к данным изменилась значительно меньше и диски стали «узким местом». Проблему решают твердотельные накопители — они обеспечивают намного большие скорости работы с данными по сравнению с жёсткими дисками[3].

SSD за счёт использования микросхем флеш-памяти по своим характеристикам существенно отличаются от жёстких дисков с магнитными пластинами. С целью оптимизации использования SSD в 2011 году был разработан логический интерфейс NVMe — англ. Non-Volatile Memory Express, поддержка которого была добавлена в Windows, начиная только с версии 8.1. В Windows 7 поддержку протокола обеспечивает исправление (hotfix) KB2990941. К тому же не все материнские платы поддерживают протокол NVMe. Поэтому некоторые модели SSD выпускаются в двух версиях — AHCI и NVMe[4].

Существуют также гибридные жёсткие диски (англ. SSHD, solid-state hybrid drive), в которых память NAND используется совместно с магнитными пластинами[5][6]. Подобное объединение позволяет воспользоваться частью преимуществ флеш-памяти (быстрый произвольный доступ) при сохранении небольшой стоимости хранения больших объёмов данных. Флеш-память в них используется в качестве буфера (кэша) небольшого объёма (к примеру, в Seagate Momentus XT от 4 до 8 Гбайт)[7] либо (реже) может быть доступной как отдельный накопитель (англ. dual-drive hybrid systems)[источник не указан 878 дней].

Технология Intel Smart Response позволяет совместно использовать SSD и HDD с целью кеширования часто используемых данных (файлов) на SSD, плюс к тому более эффективно использует SSHD[8][9]. У других производителей так же есть свои технологии для использования SSD для кеширования данных, хранящихся в HDD: Marvell HyperDuo (в контроллере Marvell 88SE9130), Adaptec MaxIQ (MaxCache), LSI CacheCade. Из них только HyperDuo предназначена для домашнего использования[10][11][12][13].

Основные характеристики твердотельных накопителей[14]:

В отличие от жестких дисков, цена SSD очень сильно зависит от доступной емкости, это связано с ограниченной плотностью размещения ячеек памяти и ограничением размера кристалла в микросхеме[15].

Название[ | код]

К твердотельным накопителям относятся только накопители на полупроводниках. Жёсткие и оптические диски к ним не относятся, хотя они, строго говоря, являются твёрдыми телами. Эта терминология противоположна используемой в лазерах. Твердотельными лазерами называют лазеры на основе любых твёрдых тел, за исключением полупроводников.

Первоначально твердотельные накопители называли «твердотельными дисками» (англ. Solid-State Disk), хотя ни один из твердотельных накопителей не является диском. Сейчас это название становится малоупотребительным.

История развития[ | код]

Рынок[ | код]

В 2013 году крупнейшими производителями микросхем NAND были Samsung, Toshiba, Micron и SK-Hynix[17], микросхем контроллеров для SSD — LSI-SandForce, Marvell, Silicon Motion, Phison и JMicron[18].
В том же году Samsung, Toshiba и Micron начали выпускать накопители с микросхемами 3D-NAND, которая позволила снизить стоимость устройств, особенно высокой ёмкости[19].

В 1 квартале 2016 года крупнейшими производителями SSD были компании Samsung Electronics (первое место, около 40 % рынка), SanDisk (12 %), Lite-On (Plextor[20], Lite-On), Kingston, Intel, Micron, HGST.

Флеш-память NAND для SSD выпускалась компаниями SanDisk, Toshiba, Samsung, Intel, Micron. Несмотря на то, что Toshiba была и является одним из крупнейших производителей микросхем NAND, доля компании на рынке SSD составляла только 3,9 %[21].
С 2016 г. Samsung выпускает «потребительские» SSD с микросхемами 3D NAND исключительно собственного производства[15].

Формфакторы и интерфейсы[ | код]

Внешние накопители[ | код]

Первоначально твердотельные накопители распространились в виде отдельных устройств накопления и переноса информации. Они подключались к компьютерам и цифровым гаджетам через ряд стандартизированных внешних интерфейсов, а конструкция накопителей позволяла неквалифицированному пользователю безопасно манипулировать ими и переносить данные между устройствами. Все эти накопители можно было разделить на две большие группы: с интерфейсом USBUSB-флешки»), преимущественно используемые с компьютерами, и карты памяти, преимущественно используемые в разнообразных электронных гаджетах, например цифровых фотоаппаратах, телефонах и т. п.

USB-накопители были отлично стандартизированы и обеспечивали работоспособность на любых устройствах с этим разъёмом. Карты памяти имели большое разнообразие несовместимых конструкций и интерфейсов. Первоначально были популярны CompactFlash, SmartMedia, Memory Stick, MMC, SD. До нашего времени высокую популярность сохранили лишь SD-карты в двух формфакторах: стандартном и миниатюрном (microSD).

Встраиваемые накопители[ | код]

По мере роста ёмкости и удешевления флеш-памяти, твердотельная память стала заменять основную долговременную память компьютеров — жёсткие диски. С целью обеспечения взаимозаменяемости с существовавшими технологиями встраиваемые твердотельные накопители стали выпускать в стандартизированных для жёстких дисков конструктивах и с наиболее популярным на тот момент интерфейсом для жёстких дисков. Так появились твердотельные диски типоразмера 2,5" с интерфейсом SATA, которые устанавливались вместо механических жёстких дисков.

Однако громоздкие конструктивы и медленные интерфейсы механических жёстких дисков не позволяли раскрыть потенциал флеш-памяти. Начался процесс миниатюризации накопителей. Первоначально отказались от конструктива жёстких дисков, стандартизировав малогабаритные конструктивы mSATA и M.2 SATA, но сохранив совместимость с интерфейсом SATA. Следующим шагом стал отказ от медленного интерфейса SATA и переход на быстрый интерфейс PCI Express. Так появились накопители с интерфейсом NVM Express (NVMe) в разнообразных конструктивах, из которых наибольшее распространение получил M.2 NVMe.

Несмотря на похожий конструктив накопители M.2 SATA нельзя установить вместо M.2 NVMe и M.2 NVMe нельзя установить вместо M.2 SATA, они несовместимы друг с другом. Внешне их можно различить по количеству вырезов на контактах платы накопителя и соответствующих ключевых вставок на ответном разъёме: у M.2 SATA их два, а у M.2 NVMe — один.

Архитектура и функционирование[ | код]

NAND SSD[ | код]

Сравнение: компоненты разобранного HDD (слева) и разобранный SSD (справа). Оба с интерфейсом IDE

Накопители, построенные на использовании энергонезависимой памяти (NAND SSD), появились во второй половине 90-х годов прошлого века, но начали уверенное завоевание рынка в связи с прогрессом в микроэлектронике и улучшением основных характеристик, в том числе стоимости за гигабайт. До середины 2000-х годов уступали традиционным накопителям — жёстким дискам — в скорости записи, но компенсировали это высокой скоростью доступа к произвольным блокам информации (скорость поиска, скорость начального позиционирования). С 2012 года уже выпускаются твердотельные накопители со скоростями чтения и записи, во много раз превосходящими возможности жёстких дисков[22]. Характеризуются относительно небольшими размерами и низким энергопотреблением.

К 2016 году были созданы микросхемы NAND с тремя различными по плотности хранения данных технологиями[15]:

TLC обеспечивает наибольшую плотность хранения данных (втрое выше, чем планарная SLC), но имеет наименьший срок службы и меньшую надёжность, которые компенсируются производителями за счёт усложнения обработки данных[15].

Дальнейшее развитие технологии NAND — 3D TLC, в которой ячейки TLC размещены на кристалле в несколько слоёв. Например, Samsung SSD 850 EVO использует 3D-память с 32 слоями 3-битных ячеек TLC. Производитель обещает для них надёжность на уровне устройств с планарными двухбитовыми MLC[15].

С 2017 года нашло распространение и QLC (Quad Level Cell) — четыре бита[23].

RAM SSD[ | код]

Эти накопители построены на использовании энергозависимой памяти (такой же, какая используется в ОЗУ персонального компьютера) наподобие RAM drive и характеризуются сверхбыстрыми чтением, записью и поиском информации. Основным их недостатком является чрезвычайно высокая стоимость за единицу объёма. Используются в основном для ускорения работы крупных систем управления базами данных и мощных графических станций. Такие накопители, как правило, оснащены аккумуляторами для сохранения данных при потере питания, а более дорогие модели — системами резервного и/или оперативного копирования. Примерами таких накопителей являются I-RAM[en] и серия HyperDrive[en] (последние известны в Европе как ACARD ANS-9010 и 9010BA).

Пользователи, обладающие достаточным объёмом оперативной памяти, могут организовывать имитацию подобных устройств за счёт технологии диск в ОЗУ (RAM drive), например, для оценки быстродействия виртуальных машин.

Другие[ | код]

В 2015 году компании Intel и Micron заявили о выходе новой энергонезависимой памяти 3D XPoint[24]. Intel планировала выпустить SSD-накопители на основе 3D XPoint с использованием интерфейса PCI Express в 2016 году, которые были бы быстрее и выносливее, чем накопители на основе NAND. В марте 2017 года Intel выпустила первый SSD-накопитель с использованием технологии 3D XPoint — Intel Optane P4800X[25].

Преимущества[ | код]

2,5" SSD с разъёмом U.2[26]

Недостатки[ | код]

Поддержка в различных ОС[ | код]

Microsoft Windows и твердотельные накопители[ | код]

В ОС Windows 7 была введена специальная оптимизация для работы с твердотельными накопителями. При наличии SSD-накопителей эта операционная система работает с ними иначе, чем с обычными HDD-дисками. Например, Windows 7 не применяет к SSD-накопителю дефрагментацию, технологии SuperFetch и ReadyBoost и другие техники упреждающего чтения, ускоряющие загрузку приложений с обычных HDD-дисков.

Предыдущие версии Microsoft Windows такой специальной оптимизации не имеют и рассчитаны на работу только с обычными жёсткими дисками. Поэтому, например, некоторые файловые операции Windows Vista, не будучи отключёнными, могут уменьшить срок службы SSD-накопителя. Операция дефрагментации должна быть отключена, так как она практически никак не влияет на производительность SSD-носителя и лишь дополнительно изнашивает его.

Mac OS X и компьютеры Macintosh с твердотельными накопителями[ | код]

Операционная система Mac OS X, начиная с версии 10.7 (Lion), полностью осуществляет TRIM-поддержку для установленной в системе твердотельной памяти[45].

С 2010 года компания Apple представила компьютеры линейки Air, полностью комплектуемые только твердотельной памятью на основе флеш-NAND памяти. До 2010 года покупатель мог выбрать для данного компьютера обычный жёсткий диск в комплектации, но дальнейшее развитие линейки в пользу максимального облегчения и уменьшения корпуса компьютеров данной серии потребовало полного отказа от обычных жёстких дисков в пользу твердотельных накопителей.

Объём комплектуемой памяти в компьютерах серии Air составляет от 128 ГБ до 512 ГБ[46]. По данным J. P. Morgan, с момента представления до июня 2011 года было продано 420 тысяч компьютеров этой серии полностью на твердотельной флеш-NAND памяти[47].

11 июня 2012 года на основе флеш-памяти был представлен обновлённый модельный ряд профессиональных ноутбуков MacBook Pro с дисплеем Retina, в котором опционально можно было установить 768 ГБ флеш-памяти[источник не указан 2580 дней].

GNU/Linux и компьютеры данной платформы с твердотельными накопителями[ | код]

Операционная система Linux, начиная с версии ядра 2.6.33, полностью осуществляет TRIM-поддержку для установленной в системе твердотельной памяти при указании опции «discard» в настройках монтирования накопителя[48].

Перспективы развития[ | код]

Главный недостаток SSD-накопителей на базе флеш-памяти — ограниченное число циклов перезаписи; при развитии технологий изготовления энергонезависимой памяти, возможно, будет устранён путём изготовления носителя информации по другим физическим принципам, например FeRam, ReRAM (resistive random-access memory) и др.

См. также[ | код]

Комментарии[ | код]

  1. Магнитные поля могут повредить только работающий жесткий диск. Например если приложить к работающему жесткому диску неодимовый магнит — это может нарушить работу маталлических движущихся частей в диске — блока магнитных головок, при этом магнитное поле не может непосредственно повредить или размагнитить диск и повредить хранящуюся на нём информацию. SSD диск ещё более устойчив к повреждению информации, хранящейся на нём, по причине воздействия магнитных полей. Для того чтобы магнитное поле размагнитило или повредило информацию, хранящуюся на SSD-диске, нужен магнит колоссальных размеров и гигантской мощности.[источник не указан 878 дней]

Примечания[ | код]

  1. SNIA, 2009, Overview, p. 2.
  2. Обер, 2016, Страница 2: Форм-факторы и разъемы: 2,5 дюйма, M.2, mSATA, SATA и PCIe.
  3. SNIA, 2009, What Is Solid State Storage?, p. 2−3.
  4. Обер, 2016, Страница 3: В чем разница между AHCI и NVMe?.
  5. Dong Ngo. WD shows off its first hybrid drive, the WD Black SSHD. WD showed off its first hybrid drive, the WD Black SSHD, which comes in both 7mm and 5mm thicknesses (англ.). Cnet (9 January 2013). Дата обращения: 27 апреля 2019.
  6. Momentus XT 750 GB Review: A Second-Gen Hybrid Hard Drive (8 февраля 2012). Дата обращения: 27 апреля 2019.
  7. Anand Lal Shimpi. Seagate 2nd Generation Momentus XT (750GB) Hybrid HDD Review. AnandTech (13 декабря 2011). Дата обращения: 27 апреля 2019.
  8. Технология Intel® Smart Response. Быстрый доступ к наиболее часто используемым файлам и приложениям. Корпорация Intel. Дата обращения: 27 апреля 2019.
  9. Андрей Кожемяко. Достоинства и недостатки технологии Intel Smart Response. Детальное исследование влияния SSD-кэширования на производительность жестких дисков. iXBT (26 марта 2013). Дата обращения: 27 апреля 2019.
  10. Технология Marvell HyperDuo. НИКС (3 мая 2012). Дата обращения: 27 апреля 2019.
  11. Adaptec MaxIQ (MaxCache). НИКС (3 сентября 2011). Дата обращения: 27 апреля 2019.
  12. Adaptec Hybrid RAID. НИКС (31 июля 2011). Дата обращения: 27 апреля 2019.
  13. LSI CacheCade. НИКС (18 апреля 2013). Дата обращения: 27 апреля 2019.
  14. SNIA, 2009, Increasing Speed Increases Profits, p. 3.
  15. 1 2 3 4 5 Обер, 2016, Страница 4: Технологии памяти: SLC, MLC, TLC и 3D-NAND.
  16. Cray-1 and Cray X-MP computer systems solid-state storage device (SSD) reference manual HR-0031 1982
  17. Shenzhen Flashmarket Information, 2014, p. 17.
  18. Shenzhen Flashmarket Information, 2014, p. 18.
  19. Shenzhen Flashmarket Information, 2014, p. 17.
  20. Toshiba может прибрать к рукам SSD-бизнес Lite-On и бренд Plextor // 3DNews, 17.08.2019
  21. Anton Shilov. Market Trends Q1 2016: Shipments of SSDs Up 32.7% Year-over-Year. AnandTech (25 мая 2016). Дата обращения: 27 апреля 2019.
  22. Стоит ли переходить с жёсткого диска на SSD?. thg.ru. Дата обращения: 13 декабря 2012.
  23. Новейшие технологии в SSD c 3D NAND-памятью // Статья от 07.12.2017 г. «CHIP».
  24. IDF 2015: Intel анонсировала продукты на базе 3D XPoint (рус.), 3DNews - Daily Digital Digest. Дата обращения 21 марта 2017.
  25. Intel Optane SSD DC P4800X 750GB Hands-On Review
  26. Demartek Storage Networking Interface Comparison // Статья от 31.07.2019 г. на сайте demartek.principledtechnologies.com.
  27. MLC vs. SLC NAND Flash in Embedded Systems
  28. Нелёгкий выбор: HDD или SSD // Дай драйвер, 2011-10-13
  29. What Happens when SSDs Fail? | The SSD Guy
  30. http://www.anandtech.com/show/4902/intel-ssd-710-200gb-review/2 «After you’ve exceeded all available p/e cycles on standard MLC, JEDEC requires that the NAND retain your data in a power-off state for a minimum of 12 months. For MLC-HET, the minimum is reduced to 3 months. In the consumer space you need that time to presumably transfer your data over.»
  31. Надёжность SSD: результаты ресурсных испытаний [обновлено 6.02.19]. 3DNews - Daily Digital Digest. Дата обращения: 20 февраля 2019.
  32. https://www.pcmag.com/article2/0,2817,2404258,00.asp «Price: SSDs are more expensive than hard drives in terms of dollar per gigabyte. „
  33. Consumer SSDs and hard drive prices are nearing parity / ComputerWorld, Dec 1, 2015 «The per-gigabyte pricing of hard disk drives and SSDs.»
  34. Notebook hard drives are dead: How SSDs will dominate mobile PC storage by 2018 / PCWorld, Dec 3, 2015 [1] «Right now, SSDs aren’t anywhere close to the same price as a hard drive: On a dollars-per-gigabyte basis, SSDs are six times the price of a comparable hard drive, according to Taiwan’s TrendForce.»
  35. Market Views: HDD Shipments Down 20 % in Q1 2016, Hit Multi-Year Low / AnandTech, May 12, 2016 «Average Selling Prices of Hard Disk Drives in $USD .. average HDD from either Seagate of Western Digital costs approximately $60.»
  36. SSD Pricing Vs. HDD Costs, 2015-10-28 «systems such as PCs and embedded systems ..can use a cheaper SSD»
  37. Jacobi, 2013: «Buy the highest capacity you can afford. You’ll get better performance, although the benefit declines rapidly beyond 256GB.».
  38. https://www.usenix.org/system/files/conference/fast16/fast16-papers-hao.pdf "«For example, SSD garbage collection, a well-known culprit, can increase latency by a factor of 100 .. The notion of „fast“ and „slow“ pages exists within an SSD; programming a slow page can be 5-8x slower compared to .. fast page»
  39. Alastair Nisbet; Scott Lawrence, Matthew Ruf. A Forensic Analysis And Comparison Of Solid State Drive Data Retention With Trim Enabled File Systems (англ.). Australian Digital Forensics Conference (2013). Дата обращения: 8 ноября 2016.
  40. Andrew Ku. Investigation: Is Your SSD More Reliable Than A Hard Drive? (англ.). tom's Hardware.
  41. Jacobi, 2013: «SSDs, and solid-state storage in general, have a disturbing tendency toward binary functionality. An SSD failure typically goes like this: One minute it’s working, the next second it’s bricked.».
  42. Jacobi, 2013, Whether the failure lies with the controller or the NAND itself, the company has a good, though not perfect, success rate..
  43. Extreme SSD Error Correction | The SSD Guy
  44. How Controllers Maximize SSD Life — Improved ECC | The SSD Guy
  45. Mac OS X Lion has TRIM support for SSDs, HiDPI resolutions for improved pixel density? (англ.)
  46. Apple (Россия) — MacBook Air — Сравнение 11-дюймового и 13-дюймового MacBook Air.
  47. J.P. Morgan sees the MacBook Air as a $3 billion business — Apple 2.0 — Fortune Tech. Архивная копия от 22 августа 2011 на Wayback Machine (англ.)
  48. ssd — How to enable TRIM? — Ask Ubuntu. (англ.)

Литература[ | код]

Ссылки[ | код]

Реклама