Реклама


IceCube

Буровая вышка и барабан со шлангом для бурения скважин «Ледяного кубика», декабрь 2009 г.

IceCube (рус. «Ледяной куб» или «Ледяной кубик», произносится «АйсКьюб») — нейтринная обсерватория, построенная на антарктической станции Амундсен-Скотт. Как и свой предшественник, мюоно-нейтринный детектор AMANDA, IceCube расположен глубоко в толще антарктического льда. На глубине от 1450 до 2450 м помещены прочные «нити» с прикреплёнными оптическими детекторами (фотоумножителями). Каждая «нить» имеет 60 фотоумножителей. Оптическая система регистрирует черенковское излучение мюонов высокой энергии, движущихся в направлении вверх (то есть из-под земли). Эти мюоны могут рождаться только при взаимодействии мюонных нейтрино, прошедших сквозь Землю, с электронами и нуклонами льда (и слоя грунта подо льдом, толщиной порядка 1 км). Поток мюонов, движущихся сверху вниз, значительно выше, однако они большей частью рождаются в верхних слоях атмосферы частицами космических лучей. Тысячи километров земного вещества служат в качестве фильтра, отсекая все частицы, которые испытывают сильное или электромагнитное взаимодействие (мюоны, нуклоны, гамма-кванты и т. п.). Из всех известных частиц только нейтрино могут пройти Землю насквозь. Таким образом, хотя IceCube расположен на Южном полюсе, он детектирует нейтрино, приходящие с северной полусферы неба.

Название детектора связано с тем, что общий объём использующегося в нём черенковского радиатора (льда) в проектной конфигурации достигает 1 кубического километра.

Содержание

Статус постройки[ | код]

Строительство нейтринного телескопа было начато в 2005 году — тогда под лёд была погружена первая «нить» с оптическими детекторами. В следующем году количество нитей достигло 9 штук, что сделало IceCube крупнейшим нейтринным телескопом в мире. В течение следующих двух летних сезонов были установлены 13 и затем 18 нитей с детекторами. Строительство обсерватории завершено в 2010 году, когда последние из 5160 предусмотренных проектом оптических модулей заняли своё место в толще антарктического льда[1]. Однако набор данных начался ещё раньше. Первое нейтринное событие было зарегистрировано 29 января 2006 года.

Задачи[ | код]

Один из цифровых оптических модулей, который в настоящее время находится в скважине № 85.

Детектирование нейтрино[ | код]

Хотя проектный темп регистрации нейтрино детектором невелик, угловое разрешение достаточно хорошее. В течение нескольких лет ожидается построение карты потока высокоэнергичных нейтрино из северной небесной полусферы.

Источники гамма-излучения[ | код]

Столкновение протонов с протонами либо с фотонами обычно порождает элементарные частицы пионы. Заряженный пион распадается главным образом на мюон и мюонное нейтрино, в то время как нейтральный пион обычно распадается на два гамма-кванта. Потенциально поток нейтрино может совпадать с потоком гамма-квантов для таких источников, как гамма-всплески и остатки сверхновых. Данные, полученные с помощью обсерватории IceCube, объединённые с данными таких детекторов высокоэнергичных гамма-квантов, как HESS и MAGIC, помогут лучше понять природу этих явлений.

Теория струн[ | код]

Учитывая мощность и местоположение обсерватории, учёные намерены провести серию экспериментов, призванных подтвердить либо опровергнуть некоторые утверждения теории струн, в частности — существование так называемого стерильного нейтрино.

Результаты[ | код]

22 сентября 2017 года детектор зарегистрировал событие IceCube-170922A, представляющее собой трек мюона, образовавшегося в результате взаимодействия со льдом прилетевшего из нижней полусферы мюонного нейтрино сверхвысокой энергии (около 290 ТэВ)[2]. В результате сопоставления данных о направлении и времени прилёта нейтрино с наблюдениями других астрономических инструментов (включая гамма-, рентгеновские, радио- и оптические телескопы) впервые удалось отождествить источник космических нейтрино сверхвысоких энергий. Им оказался блазар TXS 0506+056, находящийся в созвездии Ориона на расстоянии около 4 млрд световых лет[2]. Директор Национального научного фонда США, финансирующего IceCube, Франс Кордова по поводу данного открытия заявил: «Наступила эпоха многоканальной астрономии. Каждый канал — электромагнитный, гравитационно-волновой и теперь нейтринный — помогает нам в ещё более полном объеме понять Вселенную, а также важные процессы в самых мощных объектах на небе»[3].

См. также[ | код]

Примечания[ | код]

Ссылки[ | код]

Реклама