Реклама


C4.5

C4.5 — алгоритм для построения деревьев решений, разработанный Джоном Квинланом (англ. John Ross Quinlan). C4.5 является усовершенствованной версией алгоритма ID3 того же автора. В частности, в новую версию были добавлены отсечение ветвей (англ. pruning), возможность работы с числовыми атрибутами, а также возможность построения дерева из неполной обучающей выборки, в которой отсутствуют значения некоторых атрибутов.

Требования к данным[ | код]

Для того, чтобы с помощью C4.5 построить решающее дерево и применять его, данные должны удовлетворять нескольким условиям.

Информация об объектах, которые необходимо классифицировать, должна быть представлена в виде конечного набора признаков (атрибутов), каждый из которых имеет дискретное или числовое значение. Такой набор атрибутов назовём примером. Для всех примеров количество атрибутов и их состав должны быть постоянными.

Множество классов, на которые будут разбиваться примеры, должно иметь конечное число элементов, а каждый пример должен однозначно относиться к конкретному классу. Для случаев с нечёткой логикой, когда примеры принадлежат к классу с некоторой вероятностью, C4.5 неприменим.

В обучающей выборке количество примеров должно быть значительно больше количества классов, к тому же каждый пример должен быть заранее ассоциирован со своим классом. По этой причине C4.5 является вариантом машинного обучения с учителем.

Построение дерева[ | код]

Пусть имеется  — обучающая выборка примеров, а  — множество классов, состоящее из элементов. Для каждого примера из известна его принадлежность к какому-либо из классов .

Построение дерева решений алгоритмом C4.5 принципиально не отличается от его построения в ID3. На первом шаге имеется корень и ассоциированное с ним множество , которое необходимо разбить на подмножества. Для этого необходимо выбрать один из атрибутов в качестве проверки. Выбранный атрибут имеет значений, что даёт разбиение на подмножеств. Далее создаются потомков корня, каждому из которых поставлено в соответствие своё подмножество, полученное при разбиении . Процедура выбора атрибута и разбиения по нему рекурсивно применяется ко всем потомкам и останавливается в двух случаях:

Реализации[ | код]

Примечания[ | код]

  1. Weka.Classifiers.Trees: J48 (англ.). Документация на Sourceforge. Дата обращения: 18 февраля 2012. Архивировано 12 сентября 2012 года.

Литература[ | код]

Ссылки[ | код]

Реклама