Реклама


Фенилаланин

Фенилаланин
Phenylalanin - Phenylalanine.svg
Общие
Систематическое
наименование
2-амино-3-фенилпропановая кислота
Сокращения Фен, Phe, F
UUU, UUC
Хим. формула C₉H₁₁NO₂
Рац. формула C9H11NO2
Физические свойства
Молярная масса 165,19 г/моль
Плотность 1,29 г/см³
Термические свойства
Т. плав. 283 °C
Химические свойства
pKa 2,20
9,09
Классификация
Рег. номер CAS [63-91-2]
PubChem
Рег. номер EINECS 200-568-1
SMILES
InChI
ChEBI 17295, 8089 и 58095
ChemSpider
Приводятся данные для стандартных условий (25 °C, 100 кПа), если не указано иного.

Фенилалани́н (α-амино-β-фенилпропионовая кислота, сокр.: Фен, Phe, F) — ароматическая альфа-аминокислота. Существует в двух оптически изомерных формах l и d и в виде рацемата (dl). По химическому строению соединение можно представить как аминокислоту аланин, в которой один из атомов водорода замещён фенильной группой.

l-Фенилаланин является протеиногенной аминокислотой и входит в состав белков всех известных живых организмов. Участвуя в гидрофобных и стэкинг-взаимодействиях, фенилаланин играет значительную роль в фолдинге и стабилизации белковых структур, является составной частью функциональных центров.

Содержание

Свойства[ | код]

Фенилаланин представляет собой бесцветное кристаллическое вещество, разлагающееся при плавлении.

В вакууме при нагревании сублимирует. Ограниченно растворяется в воде, малорастворим в этаноле.

С азотной кислотой даёт ксантопротеиновую реакцию. При нагревании подвергается декарбоксилированию.

Биосинтез[ | код]

В процессе биосинтеза фенилаланина промежуточными соединениями являются шикимат, хоризмат, префенат. Фенилаланин в природе синтезируется микроорганизмами, грибами и растениями. Более подробно биосинтез фенилаланина рассмотрен в статье шикиматный путь.

Для человека, как и для всех Metazoa, фенилаланин является незаменимой аминокислотой и должен поступать в организм в достаточном количестве с белками пищи.

Катаболизм[ | код]

В природе известно несколько путей биодеградации фенилаланина. Основными промежуточными продуктами катаболизма фенилаланина и метаболически связанного с ним тирозина у различных организмов выступают фумарат, пируват, сукцинат, ацетоацетат, ацетальдегид и др. У животных и человека фенилаланин и тирозин распадаются до фумарата (превращается в оксалоацетат, являющийся субстратом глюконеогенеза) и ацетоацетата (повышает уровень кетоновых тел в крови), поэтому эти аминокислоты по характеру катаболизма у животных относят к глюко-кетогенным (смешанным) (см. классификацию аминокислот). Основным метаболическим превращением фенилаланина у животных и человека является ферментативное гидроксилирование этой аминокислоты с образованием другой ароматической аминокислоты — тирозина.

Гидроксилирование фенилаланина в тирозин

Превращение фенилаланина в тирозин в организме в большей степени необходимо для удаления избытка фенилаланина, а не для восстановления запасов тирозина, так как тирозин обычно в достаточном количестве поступает с белками пищи, и его недостатка, как правило, не возникает. Дальнейшим катаболическим превращениям подвергается именно тирозин.

Фенилаланин является предшественником циннамата — одного из основных предшественников фенилпропаноидов. Фенилаланин может метаболизироваться в один из биогенных аминов — фенилэтиламин.

При наследственном заболевании фенилкетонурии превращение фенилаланина в тирозин нарушено, и в организме происходит накопление фенилаланина и его метаболитов (фенилпируват, фениллактат, фенилацетат, орто-гидроксифенилацетат, фенилацетилглутамин), избыточное количество которых отрицательно сказывается на развитии нервной системы.

Аналоги[ | код]

Известно, что некоторые соединения, структурно близкие (аналоги) протеиногенным аминокислотам, способны конкурировать с этими протеиногенными аминокислотами, и включаться вместо них в состав белков в процессе их биосинтеза (хотя, механизмы белкового синтеза способны дискриминировать аналоги в пользу канонических природных аминокислот).[1] Такие аналоги (антагонисты протеиногенных аминокислот), являясь антиметаболитами, в той или иной мере токсичны для клеток. Для фенилаланина хорошо известны следующие аналоги.

Производство и применение[ | код]

Фенилаланин в промышленных масштабах получают микробиологическим способом[10]. Возможен также химический синтез (синтез Эрленмейера из бензальдегида, синтез Штрекера из фенилацетальдегида) с последующим разделением рацемической смеси при помощи ферментов[11]. Используют фенилаланин для сбалансирования кормов для животных, как компонент спортивного питания, как пищевая добавка. Значительная часть фенилаланина идёт на производство дипептида аспартама — синтетического сахарозаменителя, активно использующегося в пищевой промышленности, чаще в производстве жевательной резинки и газированных напитков. Употребление таких продуктов противопоказано лицам, страдающим фенилкетонурией.

Примечания[ | код]

  1. 1 2 3 4 5 6 Robert E. Marquis. Fluoroamino Acids and Microorganisms (англ.) // Handbuch der experimentellen Pharmakologie : Научный журнал. — 1970. — Vol. 20, no. 2. — P. 166—192. — DOI:10.1007/978-3-642-99973-4_5.
  2. Jason M. Crawford, Sarah A. Mahlstedt, Steven J. Malcolmson, Jon Clardy, Christopher T. Walsh. Dihydrophenylalanine: A Prephenate-Derived Photorhabdus luminescens Antibiotic and Intermediate in Dihydrostilbene Biosynthesis (англ.) // Chemistry & Biology : Научный журнал. — 2011. — Vol. 18, no. 9. — P. 1102—1112. — DOI:10.1016/j.chembiol.2011.07.009. — PMID 21944749.
  3. 1 2 Martin J. Pine. Incorporation of l-2,5-Dihydrophenylalanine into Cell Proteins of Escherichia coli and Sarcoma 180 (англ.) // Antimicrobial Agents and Chemotherapy : Научный журнал. — 1975. — Vol. 7, no. 5. — P. 601—605. — PMID 1096808.
  4. Kiso T., Usuki Y., Ping X., Fujita K., Taniguchi M. l-2,5-Dihydrophenylalanine, an inducer of cathepsin-dependent apoptosis in human promyelocytic leukemia cells (HL-60) (англ.) // The Journal of Antibiotics (Tokyo) : Научный журнал. — 2001. — Vol. 54, no. 10. — P. 810—817. — DOI:10.7164/antibiotics.54.810. — PMID 11776436.
  5. Munier R. L. Substitution totale de la phénylalanine par l’o- ou la m-fluorophénylalanine dans les protéines d’Escherichia coli (фр.) // Comptes rendus hebdomadaires des séances de l’Académie des sciences : Научный журнал. — 1959. — Vol. 248, no 12. — P. 1870—1873. — PMID 13639380.
  6. Peter James Baker and Jin Kim Montclare. Enhanced Refoldability and Thermoactivity of Fluorinated Phosphotriesterase (англ.) // ChemBioChem : Научный журнал. — 2011. — Vol. 12, no. 12. — P. 1845—1848. — DOI:10.1002/cbic.201100221. — PMID 21710682.
  7. Iino T. Genetics and chemistry of bacterial flagella (англ.) // Bacteriological Reviews : Научный журнал. — 1969. — Vol. 33, no. 4. — P. 454—475. — PMID 4906131.
  8. M. H. Richmond. The effect of amino acid analogues on growth and protein synthesis in microorganisms (англ.) // Bacteriological Reviews : Научный журнал. — 1962. — Vol. 26, no. 4. — P. 398—420. — PMID 13982167.
  9. Yingjie Zhang, Hao Fang, Wenfang Xu. Applications and Modifications of 1,2,3,4-Tetrahydroisoquinoline-3-Carboxylic Acid (Tic) in Peptides and Peptidomimetics Design and Discovery (англ.) // Current Protein & Peptide Science : Научный журнал. — 2010. — Vol. 11, no. 8. — P. 752—758. — DOI:10.2174/138920310794557691. — PMID 21235510.
  10. Johannes Bongaerts, Marco Krämer, Ulrike Müller, Leon Raeven, Marcel Wubbolts. Metabolic Engineering for Microbial Production of Aromatic Amino Acids and Derived Compounds (англ.) // Metabolic Engineering : Научный журнал. — 2001. — Vol. 3, no. 4. — P. 289—300. — DOI:10.1006/mben.2001.0196. — PMID 11676565.
  11. K. Arvid J. Wretlind. Resolution of racemic phenylalanine (англ.) // Journal of Biological Chemistry : Научный журнал. — 1950. — Vol. 186, no. 1. — P. 221—224. — PMID 14778824.

Литература[ | код]

Реклама