Реклама


Фаговый дисплей

Фаговый дисплей (англ. phage display) — это лабораторный метод изучения белок-белковых, белок-пептидных и ДНК-белковых взаимодействий, использующий бактериофагов для того, чтобы соотнести белки и генетическую информацию, кодирующую их. Суть метода в том, что ген, который кодирует белок, интересующий исследователя, встраивают в ген фага, отвечающий за синтез белка капсида, в результате чего фаг начинает «отображать» исследуемый белок на своей оболочке. Так получают соответствие между генотипом и фенотипом фага, а затем исследуют взаимодействие данного белка с другими белками, пептидами или последовательностями ДНК. С помощью селекции in vitro, аналогичной естественному отбору, и амплификации таким образом могут быть получены большие белковые библиотеки.

Наиболее часто используемыми бактериофагами для фагового дисплея являются M13, T4, T7, филаментные фаги[1] и фаг λ.[2]

Содержание

История[ | код]

Метод фагового дисплея был впервые описан Джорджем Смитом (George P. Smith) в 1985 г.[3], который продемонстрировал «отображение» пептида на филаментном фаге после внесения изменений в ген III этого фага. В том же году получает патент Джордж Печеник (George Pieczenik), который также описывает получение библиотек фагового дисплея. Впоследствии в развитии этой технологии принимали участие группы Лаборатории молекулярной биологии в Кембридже, Исследовательского института Скриппса (США), Национального центра исследования рака (Германия).

Общий вид процедуры[ | код]

Последовательность шагов исследования методом фагового дисплея

Далее приведены типичные шаги исследования методом фагового дисплея для определения полипептидов, которые связываются с высокой аффинностью с целевыми белками или последовательностями ДНК:

  1. Целевые белки или последовательности ДНК помещаются в ячейки микротитрационного планшета.
  2. Различные генетические последовательности, вставленные в ген синтеза капсида, экспрессируются в бактериофагах, таким образом, на оболочке каждого фага «отображается» свой белок, соответствующий внесенным генетическим изменениям.
  3. Эти бактериофаги помещаются на планшет, и спустя некоторое время, которое требуется для связывания, смываются с него.
  4. Таким образом, на планшете останутся только те фаги, которые хорошо связались с целевыми молекулами, а остальные будут смыты.
  5. Связавшиеся фаги могут быть элюированы (отмыты) и использованы для получения новых фагов путём заражения подходящих бактерий-носителей. Новая популяция фагов представляет собой смесь, в которой намного меньше нерелевантных (не связывающихся с целевыми молекулами) фагов, чем в изначальной смеси.
  6. Шаги 3-5 опционально можно повторить несколько раз для получения более богатой специфичными фагами популяции.
  7. После амплификации с помощью бактерий секвенируется ДНК полученных специфичных фагов для определения белков или их фрагментов, взаимодействующих с целевыми молекулами.

Применения[ | код]

Применения технологии фагового дисплея включают в себя определение взаимодействующих веществ для определённого белка, позволяя впоследствии установить функцию или механизм работы этого белка. Фаговый дисплей широко используется для белковой эволюции in vitro — так называемой белковой инженерии. В этом применении он является полезным инструментом для поиска и обнаружения новых лекарств. Также он используется для поиска новых лигандов (ингибиторов ферментов, агонистов и антагонистов рецепторов) целевых белков. [4][5][6]

С помощью этого метода определяют опухолевые антигены[7] (для целей диагностического и терапевтического таргетирования), а также исследуют ДНК-белковые взаимодействия[8], используя библиотеки специальных последовательностей ДНК с рандомизированными сегментами.

Получение антител in vitro[ | код]

Изобретение метода фагового дисплея привело к прорыву в области поиска новых антител. В 1991 г. группа Исследовательского центра Скриппса сообщила о первом «отображении» человеческих антител на фаге. Фаговый дисплей библиотек антител стал мощным методом как для изучения иммунного ответа, так и для быстрой селекции и эволюции человеческих антител для последующего использования в терапевтических целях.

Библиотеки антител, отображающие на фагах миллионы различных антител, часто используются в фармацевтической индустрии для выделения узкоспецифичных терапевтических антител с последующей разработкой лекарств, основанных на них, прежде всего противораковых и противовоспалительных.

Примечания[ | код]

  1. Kehoe JW, Kay BK (2005). “Filamentous phage display in the new millennium”. Chem. Rev. 105 (11): 4056—4072. DOI:10.1021/cr000261r.
  2. Smith GP, Petrenko VA (1997). “Phage display”. Chem. Rev. 97 (2): 391—410. DOI:10.1021/cr960065d.
  3. Smith GP (1985). “Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface”. Science. 228 (4705): 1315—1317. DOI:10.1126/science.4001944. PMID 4001944.
  4. Lunder M, Bratkovic T, Doljak B, Kreft S, Urleb U, Strukelj B, Plazar N (November 2005). “Comparison of bacterial and phage display peptide libraries in search of target-binding motif”. Appl. Biochem. Biotechnol. 127 (2): 125—31. DOI:10.1385/ABAB:127:2:125. PMID 16258189.
  5. Bratkovic T, Lunder M, Popovic T, Kreft S, Turk B, Strukelj B, Urleb U (July 2005). “Affinity selection to papain yields potent peptide inhibitors of cathepsins L, B, H, and K”. Biochem. Biophys. Res. Commun. 332 (3): 897—903. DOI:10.1016/j.bbrc.2005.05.028. PMID 15913550.
  6. Lunder M, Bratkovic T, Kreft S, Strukelj B (July 2005). “Peptide inhibitor of pancreatic lipase selected by phage display using different elution strategies”. J. Lipid Res. 46 (7): 1512—6. DOI:10.1194/jlr.M500048-JLR200. PMID 15863836.
  7. Hufton SE, Moerkerk PT, Meulemans EV, de Bruïne A, Arends JW, Hoogenboom HR (December 1999). “Phage display of cDNA repertoires: the pVI display system and its applications for the selection of immunogenic ligands”. J. Immunol. Methods. 231 (1—2): 39—51. DOI:10.1016/S0022-1759(99)00139-8. PMID 10648926.
  8. Gommans WM, Haisma HJ, Rots MG (December 2005). “Engineering zinc finger protein transcription factors: the therapeutic relevance of switching endogenous gene expression on or off at command”. J. Mol. Biol. 354 (3): 507—19. DOI:10.1016/j.jmb.2005.06.082. PMID 16253273.
Цинковый палец Это заготовка статьи по молекулярной биологии. Вы можете помочь проекту, дополнив её.
Реклама