Окружность

Окружность (C), её центр (O), радиус (R) и диаметр (D)

Окру́жность — замкнутая плоская кривая, которая состоит из всех точек на плоскости, равноудалённых от заданной точки[1]. Эта точка называется центром окружности. Отрезок, соединяющий центр с какой-либо точкой окружности, называется радиусом; радиусом называется также и длина этого отрезка. Внутренность окружности называется кругом; в зависимости от подхода, круг может включать граничные точки (то есть окружность) или не включать их.

Построение окружности с помощью циркуля

Практическое построение окружности производится с помощью циркуля. Окружность нулевого радиуса (вырожденная окружность) является точкой, далее этот случай исключается из рассмотрения, если не оговорено иное.

Окружность называется единичной, если её радиус равен единице. Единичная окружность является одним из основных объектов тригонометрии.

Далее всюду буква обозначает радиус окружности.

Хорды, дуги и касательные[ | код]

Окружность разбивает свою плоскость на две части[2] — конечную внутреннюю (круг) и бесконечную внешнюю, состоящую из точек плоскости, удалённых от центра более чем на .

Прямая, пересекающая окружность в двух различных точках, называется секущей. Отрезок секущей, расположенный внутри окружности, называется хордой. Хорда, проходящая через центр окружности, называется диаметром; тот же термин используется для его длины. Диаметр вдвое больше радиуса: он делит окружность и круг на две равные части и поэтому является их осью симметрии. Диаметр больше любой другой хорды[3].

Хорда разбивает круг на две части, называемые сегментами круга. Два различных радиуса тоже разбивают круг на две части, называемые секторами круга (см. рисунки)[3].

Любые две не совпадающие точки окружности делят её на две части. Каждая из этих частей называется дугой окружности. Дуга называется полуокружностью, если отрезок, соединяющий её концы, является диаметром.

Для заданной окружности имеют место следующие свойства[3].

Прямая, имеющая с окружностью ровно одну общую точку, называется касательной к окружности, а их общая точка называется точкой касания прямой и окружности. Касательная к окружности всегда перпендикулярна её радиусу (и диаметру), проведенному в точке касания. То есть радиус является одновременно и нормалью к окружности[4].

Отрезки касательных к окружности, проведённых из одной точки, не лежащей на окружности, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Углы[ | код]

Центральный угол — угол с вершиной в центре окружности. Центральный угол может быть принят как угловая мера дуги, на которую опирается. Центральный угол, образуемый дугой окружности, равной по длине радиусу, в математике принимается в качестве единицы измерения углов, и называется радиан. С ростом угла значение его радианной меры меняется от 0 до

Из определения радиана следует, что длина любой дуги окружности связана с центральным углом , опирающимся на эту дугу, простым соотношением[5]: Длина хорды, стягивающей ту же дугу, равна Отсюда следует, что длину всей окружности можно вычислить по формуле

Вписанный угол — угол, вершина которого лежит на окружности, а стороны пересекают эту окружность.

Внешний угол для вписанного угла — угол, образованный одной стороной и продолжением другой стороны вписанного угла (угол θ коричневого цвета на рис.). Внешний угол для вписанного угла равен вписанному углу, опирающемуся на ту же хорду с другой стороны.

Угол между окружностью и прямой — угол между секущей прямой и одной из двух касательных к окружности в точке пересечения прямой и окружности.

Свойства вписанных углов:

Другие свойства:

Свойства[ | код]

Theoremsecants.png

Если из произвольной точки , лежащей вне окружности, проведены две секущие, то произведение одной секущей на её внешнюю часть равно произведению другой секущей на её внешнюю часть, т. е. (см. рис.)

Сводка формул[ | код]

Длина окружности:

Радиус окружности:

Диаметр окружности:

Площадь круга радиуса R:

Площадь сектора, ограниченного центральным углом α, измеряемым в градусах, радиусом R:

Площадь сегмента, ограниченного дугой окружности, центральным углом α, хордой:

История[ | код]

Окружность, наряду с прямой, является самой распространённой кривой практически во всех областях человеческой деятельности. История её исследования и применения уходит в глубокую древность; особенную важность придало этой теме изобретение колеса. Античные учёные рассматривали прямые и окружности как единственный пример «совершенных» кривых, поэтому в геометрии считались допустимыми только построения с помощью циркуля и линейки, а движение планет моделировалось как наложение вращений по окружностям. Теории окружностей посвящена III книга «Начал» Евклида.

Также в древности было открыто, что отношение длины окружности к её диаметру (число π) одно и то же для всех окружностей. Исторически важной темой многовековых исследований было уточнение этого отношения, а также попытки решить проблему «квадратуры круга». В дальнейшем развитие теории окружностей привело к созданию тригонометрии, теории колебаний и многих других практически важных разделов науки и техники.

Окружность получается как сечение конуса плоскостью, перпендикулярной его оси

Аналитическая геометрия окружностей[ | код]

С точки зрения аналитической геометрии, окружность является простой плоской алгебраической кривой второго порядка. Окружность является частным случаем эллипса, у которого полуоси равны, и поэтому окружность относится к коническим сечениям.

Декартовы координаты[ | код]

Окружность радиуса r = 1, центр (a, b) = (1.2, −0.5)

Общее уравнение окружности записывается как:

или

где

Точка  — центр окружности,  — её радиус.

Уравнение окружности радиуса с центром в начале координат:

Уравнение окружности, проходящей через точки не лежащие на одной прямой (с помощью определителя):

Тогда в явном виде координаты центра окружности определяются по формулам:

Окружность также можно описать с помощью параметрического уравнения:

В декартовой системе координат окружность не является графиком функции, но она может быть описана как объединение графиков двух следующих функций:

Если центр окружности совпадает с началом координат, функции принимают вид:

Полярные координаты[ | код]

Окружность радиуса с центром в точке :

Если полярные координаты центра окружности то проходящая через начало координат окружность описывается уравнением:

Если же центр является началом координат, то уравнение будет иметь вид

Комплексная плоскость[ | код]

На комплексной плоскости окружность задаётся формулой:

или в параметрическом виде

Окружности в пространстве[ | код]

В пространстве окружность радиуса с центром в точке можно определить как контур диаметрального сечения сферы

плоскостью

,

где  — параметры, не равные одновременно нулю; то есть все точки, лежащие на данной окружности, есть решения системы

Например, при решения этой системы можно задать параметрически следующим образом:

Касательные и нормали[ | код]

Уравнение касательной к окружности в точке определяется уравнением

Уравнение нормали в той же точке можно записать как

Концентрические и ортогональные окружности[ | код]

Концентрические окружности

Окружности с общим центром, но разными радиусами, называются концентрическими. Две окружности, заданные уравнениями:

являются концентрическими в том и только в том случае, когда и

Две окружности являются ортогональными (то есть пересекающиеся под прямым углом) тогда и только тогда, когда выполняется условие

Дополнительные сведения[ | код]

Определение треугольников для одной окружности[ | код]

Через вершину треугольника проведена касательная к описанной окружности

Варианты определения окружности[ | код]

Связанные определения для двух окружностей[ | код]

Определения углов для двух окружностей[ | код]

Ортогональность[ | код]

Связанные определения для трех окружностей[ | код]

Лемма Архимеда[ | код]

Лемма Архимеда. Если окружность вписана в сегмент окружности, стягиваемый хордой , и касается дуги в точке , а хорды — в точке , то прямая является биссектрисой угла . Лемма Архимеда играет важную роль при построении изоциркулярного преобразования.

Доказательство

Пусть — гомотетия, переводящая малую окружность в большую. Тогда ясно, что является центром этой гомотетии. Тогда прямая перейдет в какую-то прямую , касающуюся большой окружности, а перейдет в точку на этой прямой и принадлежащей большой окружности. Вспомнив, что гомотетия переводит прямые в параллельные им прямые, понимаем, что . Пусть и — точка на прямой , такая, что — острый, а — такая точка на прямой , что — острый. Тогда, так как — касательная к большой окружности . Следовательно — равнобедренный, а значит , то есть — биссектриса угла .

Теорема Декарта для радиусов четырех попарно касающихся окружностей[ | код]

Теорема Декарта утверждает, что радиусы любых четырёх взаимно касающихся окружностей удовлетворяют некоторому квадратному уравнению. Их иногда называют окружностями Содди.

Многомерное обобщение[ | код]

Обобщённую окружность можно определить для любой математической структуры, где задано понятие расстояния. В частности, обобщением для многомерного евклидова пространства является гиперсфера; в трёхмерном пространстве это обычная сфера. В сферической геометрии важную роль играют окружности на сфере, центр которых совпадает с центром сферы («большие круги»).

См. также[ | код]

Примечания[ | код]

Литература[ | код]

Ссылки[ | код]