Реклама


Наименьшее общее кратное

Наиме́ньшее о́бщее кра́тное () двух целых чисел и есть наименьшее натуральное число, которое делится на и без остатка, то есть кратно им обоим. Обозначается одним из следующих способов:

Пример: .

Наименьшее общее кратное для нескольких чисел — это наименьшее натуральное число, которое делится на каждое из этих чисел.

Одно из наиболее частых применений — приведение дробей к общему знаменателю.

Свойства[ | код]

Нахождение НОК[ | код]

можно вычислить несколькими способами.

1. Если известен наибольший общий делитель, можно использовать его связь с :

2. Пусть известно каноническое разложение обоих чисел на простые множители:

где — различные простые числа, а и — неотрицательные целые числа (они могут быть нулями, если соответствующее простое отсутствует в разложении). Тогда вычисляется по формуле:

Другими словами, разложение содержит все простые множители, входящие хотя бы в одно из разложений чисел , причём из показателей степени этого множителя берётся наибольший. Пример для бóльшего количества чисел:

Вычисление наименьшего общего кратного нескольких чисел может быть также сведено к нескольким последовательным вычислениям от двух чисел:

См. также[ | код]

Литература[ | код]

Ссылки[ | код]

Реклама