Гипербола (математика)

Гипербола и её фокусы
Сечения конусов плоскостью (с эксцентриситетом, большим единицы)

Гипе́рбола (др.-греч. ὑπερβολή, от ὑπερ — «верх» + βαλειν — «бросать») — геометрическое место точек M Евклидовой плоскости, для которых абсолютное значение разности расстояний от M до двух выделенных точек и (называемых фокусами) постоянно. Точнее,

причём

Наряду с эллипсом и параболой, гипербола является коническим сечением и квадрикой. Гипербола может быть определена как коническое сечение с эксцентриситетом, бо́льшим единицы.

История[ | код]

Термин «гипербола» (греч. ὑπερβολή — избыток) был введён Аполлонием Пергским (ок. 262 год до н. э. — ок. 190 год до н. э.), поскольку задача о построении точки гиперболы сводится к задаче о приложении с избытком.

Определения[ | код]

Гипербола может быть определена несколькими путями.

Коническое сечение[ | код]

Три основных конических сечения

Гипербола может быть определена как множество точек, образуемое в результате сечения кругового конуса плоскостью, отсекающей обе части конуса. Другими результатами сечения конуса плоскостью являются парабола, эллипс, а также такие вырожденные случаи, как пересекающиеся и совпадающие прямые и точка, возникающие, когда секущая плоскость проходит через вершину конуса. В частности, пересекающиеся прямые можно считать вырожденной гиперболой, совпадающей со своими асимптотами.

Как геометрическое место точек[ | код]

Через фокусы[ | код]

Гипербола может быть определена как геометрическое место точек, абсолютная величина разности расстояний от которых до двух заданных точек, называемых фокусами, постоянна.

Для сравнения: кривая постоянной суммы расстояний от любой её точки до фокусов — эллипс, постоянного отношения — окружность Аполлония, постоянного произведения — овал Кассини.

Через директрису и фокус[ | код]

Геометрическое место точек, для которых отношение расстояния до фокуса и до заданной прямой, называемой директрисой, постоянно и больше единицы, называется гиперболой. Заданная постоянная называется эксцентриситетом гиперболы.

Связанные определения[ | код]

Асимптоты гиперболы (красные кривые), показанные голубым пунктиром, пересекаются в центре гиперболы, C. Два фокуса гиперболы обозначены как F1 и F2. Директрисы гиперболы обозначены линиями двойной толщины и обозначены D1 и D2. Эксцентриситет ε равен отношению расстояний точки P на гиперболе до фокуса и до соответствующей директрисы (показаны зелёным). Вершины гиперболы обозначены как ±a. Параметры гиперболы обозначают следующее:

a — расстояние от центра C до каждой из вершин
b — длина перпендикуляра к оси абсцисс, восставленного из каждой из вершин до пересечения с асимптотой
c — расстояние от центра C до любого из фокусов, F1 и F2,
θ — угол, образованный каждой из асимптот и осью, проведённой между вершинами

Соотношения[ | код]

Для характеристик гиперболы, определённых выше, существуют следующие соотношения

Равнобочная гипербола[ | код]

Равнобочная гипербола

Гиперболу, у которой , называют равнобочной. Равнобочная гипербола в некоторой прямоугольной системе координат описывается уравнением

при этом фокусы гиперболы располагаются в точках (a, a) и (−a,−a).

Уравнения[ | код]

Декартовы координаты[ | код]

Гипербола задаётся уравнением второй степени в декартовых координатах (x, y) на плоскости:

,

где коэффициенты Axx, Axy, Ayy, Bx, By, и C удовлетворяют следующему соотношению

и

Канонический вид[ | код]

Перемещением центра гиперболы в начало координат и вращением её относительно центра уравнение гиперболы можно привести к каноническому виду:

,

где a — действительная полуось гиперболы; b — мнимая полуось гиперболы[1].

Полярные координаты[ | код]

График гиперболы в полярных координатах

Если полюс находится в фокусе гиперболы, а вершина гиперболы лежит на продолжении полярной оси, то

Если полюс находится в фокусе гиперболы, а полярная ось параллельна одной из асимптот, то

Параметризация ветви гиперболы с помощью гиперболических функций

Уравнения в параметрической форме[ | код]

Подобно тому, как эллипс может быть представлен уравнениями в параметрической форме, в которые входят тригонометрические функции, гипербола в прямоугольной системе координат, центр которой совпадает с её центром, а ось абсцисс проходит через фокусы, может быть представлена уравнениями в параметрической форме, в которые входят гиперболические функции[2].

В первом уравнении знак «+» соответствует правой ветви гиперболы, а «-» — её левой ветви.

Свойства[ | код]

Асимптоты[ | код]

Две сопряжённые гиперболы (голубая и зелёная) обладают совпадающими асимптотами (красные). Эти гиперболы единичные и равнобочные, так как a = b = 1

Для гиперболы, заданной в каноническом виде

уравнения двух асимптот имеют вид:

.

Диаметры и хорды[ | код]

Диаметры гиперболы

Диаметром гиперболы, как и всякого конического сечения, является прямая, проходящая через середины параллельных хорд. Каждому направлению параллельных хорд соответствует свой сопряжённый диаметр. Все диаметры гиперболы проходят через её центр. Диаметр, соответствующий хордам, параллельным мнимой оси, есть действительная ось; диаметр соответствующий хордам, параллельным действительной оси, есть мнимая ось.

Угловой коэффициент параллельных хорд и угловой коэффициент соответствующего диаметра связан соотношением

Если диаметр a делит пополам хорды, параллельные диаметру b, то диаметр b делит пополам хорды, параллельные диаметру a. Такие диаметры называются взаимно сопряжёнными. Главными диаметрами называются взаимно сопряжённые и взаимно перпендикулярные диаметры. У гиперболы есть только одна пара главных диаметров — действительная и мнимая оси.

Определение центра гиперболы по её графику

Касательная и нормаль[ | код]

Поскольку гипербола является гладкой кривой, в каждой её точке (x0, y0) можно провести касательную и нормаль. Уравнение касательной к гиперболе, заданной каноническим уравнением, имеет вид:

,

или, что то же самое,

.

Уравнение нормали к гиперболе имеет вид:

.

Кривизна и эволюта[ | код]

Синим цветом показана гипербола. Зелёным цветом — эволюта правой ветви этой гиперболы (эволюта левой ветви вне рисунка. Красным цветом показан круг, соответствующий кривизне гиперболы в её вершине)

Кривизна гиперболы в каждой её точке (x, y) определяется из выражения:

.

Соответственно, радиус кривизны имеет вид:

.

В частности, в точке (a, 0) радиус кривизны равен

.

Координаты центров кривизны задаются парой уравнений:

Подставив в последнюю систему уравнений вместо x и y их значения из параметрического представления гиперболы, получим пару уравнений, задающих новую кривую, состоящую из центров кривизны гиперболы. Эта кривая называется эволютой гиперболы.

Эллиптическая система координат

Обобщение[ | код]

Гипербола есть Синусоидальная спираль при при ;


Применения[ | код]

Гиперболы на вертикальных солнечных часах Дворца великих князей литовских в Вильнюсе, видна круглая тень верхушки гномона, описывающая гиперболу в течение дня

См. также[ | код]

Примечания[ | код]

  1. Шнейдер В.Е. Краткий курс высшей математики. — Рипол Классик. — ISBN 9785458255349.
  2. Погорелов А. В. Геометрия. — М.: Наука, 1983. — С. 15—16. — 288 с.

Литература[ | код]