Реклама


Весы

Старинные весы для взвешивания табака (1850-е годы)

Весы́ — устройство или прибор для определения массы тел (взвешивания) по действующему на них весу, приближённо считая его равным силе тяжести[1]. Вес тела может быть определён как через сравнение с весом эталонной массы (как в рычажных весах), так и через измерение этой силы через другие физические величины.

Помимо самостоятельного использования весы могут быть основным элементом автоматизированной системы учёта и контроля материальных потоков. Это обеспечивает оперативное управление производством и позволяет увеличить объёмы производства, повысить качество и рентабельность продукции, снижая при этом затраты и издержки.

История[ | код]

Весы
Весы. Отсчёт

Первые найденные археологами образцы весов относятся к V тысячелетию до н. э., применялись они в Месопотамии[2][3].

Весы хорошо видны на папирусе XIX династии (около 1250 года до н. э.). Согласно древнеегипетской «Книге мертвых», Анубис, на входе в подземное царство взвешивает сердце всякого умершего на особых весах, где в качестве гири выступает перо правосудия богини Маат.

Каменная стела I тысячелетия до н. э. (Турция) изображает хетта, использующего вместо поперечной планки балансовых весов собственный палец[3].

Историки приписывают римлянам изобретение принципиально новой системы измерения веса — при которой передвигается гиря, а точка опоры и положение привеса остаются неизменными[3]. В Помпеях найден один из самых ранних безменов[2][3]. У римского приспособления, в отличие от современного, было две шкалы и две ручки в виде крюков.

В Древней Руси товары взвешивали на равноплечих весах — скалвах. С XIV века на Руси появляется слово «безмен» (мера веса равная 1,022)[4].

Принцип действия[ | код]

Рычажные весы[ | код]

Рычажные весы — это весы, в которых передаточным устройством является рычаг или система рычагов.

Равноплечные весы[ | код]

Весы, эквилибр и компаратор

Равноплечные весы, вероятно, были первым изобретённым массовым измерительным прибором[5]. Традиционные равноплечные весы состоят из поворотного горизонтального рычага с плечами одинаковой длины — балки — и взвешивающего поддона[6], подвешенного на каждом плече. Неизвестная масса помещается в одну чашу, а стандартные массы добавляются в другую чашу до тех пор, пока балка не станет как можно ближе к равновесию (насколько это возможно).

Весы[ | код]

В равноплечных рычажных весах точки подвеса грузов (m1 и m2) и точка опоры образуют равнобедренный треугольник (коромысло) с высотой h и вершиной в точке опоры. При повороте равнобедренного треугольника (коромысла) на угол α одно плечо увеличивается, а другое уменьшается. Поворот коромысла останавливается при равенстве крутящих моментов: m1*l1=m2*l2, m1/m2=l2/l1, где l1и l2 — плечи крутящих моментов. Угол поворота коромысла можно отградуировать в единицах массы (количество). Чем меньше высота треугольника — h, тем меньше изменение плеч при повороте и больше чувствительность весов. Такое устройство соответствует состоянию устойчивого равновесия.

Эквилибр[ | код]

При нулевой высоте треугольника h=0 (как это иногда рисуют в некоторых статьях) коромысло из треугольника превращается в прямую линию. При повороте прямого коромысла длина плеч изменяется одинаково, соотношение l1/l2 не изменяется и равновесие не устанавливается. Такое устройство соответствует состоянию безразличного равновесия. При взвешивании на эквилибре положения устойчивого равновесия нет и равновесие определяют по безразличному положению коромысла при ручном отклонении влево и вправо.

Компаратор[ | код]

Если точка опоры находится ниже точек подвеса, то такое устройство работает как компаратор или триггер, то есть определяет только какая из двух масс больше, а какая меньше (качество). Такое устройство соответствует состоянию неустойчивого равновесия.

Разноплечные весы[ | код]

Одногиревые разноплечные весы 0-100 граммов

Условия равновесия совсем другие, чем равноплечных весах.
Одногиревые разноплечные весы, приведённые на рисунке справа, уменьшают число гирь (разновесов) и вероятность их потери, то есть имеют повышенную надёжность, но имеют сильно уменьшенный диапазон взвешиваемых грузов. Шкала весов нелинейна, сжата на краях диапазона весов и растянута в средней части диапазона весов.

Основные параметры весов[ | код]

Наибольший предел взвешивания (НПВ) — верхняя граница предела взвешивания, определяющая наибольшую массу, измеряемую при одноразовом взвешивании.

Наименьший предел взвешивания (НмПВ) — нижняя граница предела взвешивания, определяется минимальным грузом, при одноразовом взвешивании которого относительная погрешность взвешивания не должна превышать допустимого значения.

Цена деления d — разность значений массы, соответствующих двум соседним отметкам шкалы весов с аналоговым отсчётным устройством, или значение массы, соответствующее дискретности отсчёта цифровых весов.

Цена поверочного деления e — условная величина, выраженная в единицах массы, используемая при классификации весов и нормировании требований к ним.

Число поверочных делений n — значение НПВ/e.

Предельно допустимая погрешность измерений определяется ценой поверочного деления e. Обычно производитель весов гарантирует следующее соотношение: d = e. Чем ниже погрешность, тем выше точность измерений.

Погрешность весов в диапазоне измерений по абсолютному значению не должна превышать пределов допускаемой погрешности, приведенных в таблице по ГОСТ 24104-2001 (Прекращено применение на территории РФ с 01.01.2010. Ныне действует ГОСТ Р 53228-2008):

Интервалы взвешивания для весов класса точности Пределы допускаемой погрешности
специального высокого среднего при первичной поверке в эксплуатации
До 50000 e включительно До 5000 e включительно До 500 e включительно ± 0,5e ± 1,0e
Св. 50000 e до 200000 e включительно Св. 5000 e до 20000 e включительно Св. 500 e до 2000 e включительно ± 1,0e ± 2,0e
Св. 200000 e Св. 20000 e Св. 2000 e ± 1,5e ± 3,0e

Пылевлагозащита IP (International Protection, «Ingress») — степени защиты, обеспечиваемые оболочками (IEC 60529, DIN 40050, ГОСТ 14254-96). Обычно обозначается как «IP» и две цифры, первая — степень защиты людей от доступа к опасным частям электрооборудования и самого изделия от попадания внутрь посторонних твёрдых предметов (от 0 до 6), а вторая — степень его защиты от вредных воздействий в результате проникновения воды (от 0 до 8). «Защиту от пыли» имеют изделия с IP5X и выше. «Защиту от брызг» — изделия с IPX3 и выше, герметизацию — IPX7 и IPX8. Максимальная степень защиты электрооборудования по ГОСТ — IP68 (пыленепроницаемое и герметичное при длительном нахождении под слоем воды 15 см от верхней точки). Комбинация IP69K (есть только в DIN) — означает пыленепроницаемость и влагозащищённость при чистке струёй высокого давления или паром (но, вообще говоря, не гарантирует герметичность при нахождении в воде).

Взрывозащита весов Ex. Для использования весов в среде огне- и взрывоопасных смесей, на предприятиях нефтеперерабатывающей, химической, горнодобывающей, пищевой промышленностей весовое оборудование выполняется во взрывозащищённом исполнении. Наличие маркировки Ex с последующими цифровыми обозначениями подразумевает, что в весах или другом оборудовании, которое находится во взрывоопасной среде, не может образоваться искра, способная вызвать взрыв или возгорание этой смеси.

Устройство выборки массы тары — устройство, позволяющее привести показания весов к нулю, когда тара помещается на грузоприёмное устройство, с уменьшением НПВ на массу тары.

Устройство компенсации массы тары — устройство, позволяющее привести показания весов к нулю, когда тара помещается на грузоприёмное устройство, без уменьшения НПВ.

Классификация весов[ | код]

Электронные весы для взвешивания мешков риса
Современные весы для взвешивания предметов малой массы

По принципу действия[ | код]

По тому, на каких физических законах основано взвешивание, весы можно разделить на:

По эксплуатационному назначению[ | код]

По области применения (эксплуатационному назначению), согласно ГОСТ 29329-92, весы можно подразделить на следующие группы:

По точности взвешивания[ | код]

По способу установки на месте эксплуатации[ | код]

Напольные весы производства СССР

По виду уравновешивающего устройства[ | код]

По виду грузоприёмного устройства[ | код]

По способу достижения положения равновесия[ | код]

В зависимости от вида отсчётного устройства[ | код]

По требованиям[ | код]

ГОСТ Р 53228-2008[10], который описывает общие технические требования, предъявляемые к весам, классифицирует их следующим образом:

По классу точности

Возможные источники погрешностей механических весов[ | код]

При работе с высокоточными лабораторными и аналитическими механическими весами возможны также такие погрешности:

Строго говоря, изготовить совершенно равноплечные весы без погрешностей отсчёта по оптической шкале невозможно, поэтому при необходимости особо точной работы на таких весах следует применять методы точного взвешивания, такие как:

Для получения точных результатов необходимо вносить поправку на создаваемую атмосферным воздухом силу Архимеда, действующую вверх и потому приводящую к занижению показаний весов по сравнению с реальными величинами[11].

Разновес[ | код]

Древне-Ассирийские гири для весов
(рисунок из «Библейской энциклопедии»)

Наборы гирь для определённых весов называются разновесом. В зависимости от максимальной и минимальной массы, взвешиваемой на весах, разновес может состоять из большего или меньшего числа элементов.

Современная, наиболее распространённая система численного ряда для разновесов была предложена Д. И. Менделеевым. Она обеспечивает минимальное число операций наложения/снятия гирь на чашки весов при подборе навески. Ранее применялся фунтовый разновес. В него входил набор гирь в 1, 2, 3, 6, 12, 24 и 48 золотников. В таком разновесе ни одна гиря не повторялась, а сумма всех их как раз и составляла один фунт. Фунт подразделялся на 96 золотников, а золотник на 96 долей.

Разновес для чашечных весов

Современный разновес содержит гири из численного ряда 1, 2 (по 2 гири), 5.

Наборы гирь (разновесы) выпускают разных классов точности. Они подлежат обязательной сертификации и первичной и периодической поверке органами метрологического контроля. Для образцовых и аналитических гирей особое значение имеет материал, применяемый для их изготовления. Для того чтобы гири не изменяли своей массы, необходимо, чтобы материалы для них были:

Возможные источники погрешности электронных весов[ | код]

При использовании высокоточных весов, таких, как весы аналитические или лабораторные, существует вероятность погрешности измерений. Источником таких погрешностей могут стать следующие факторы:

См. также[ | код]

Примечания[ | код]

  1. В обиходе понятия вес, сила тяжести и масса нередко путают.
  2. 1 2 В. Н. Пипуныров. История весов и весовой промышленности в сравнительно-историческом освещении. М, 1955 г.
  3. 1 2 3 4 - История весов
  4. безмен // Толковый словарь русского языка : в 4 т. / гл. ред. Б. М. Волин, Д. Н. Ушаков (т. 2—4) ; сост. Г. О. Винокур, Б. А. Ларин, С. И. Ожегов, Б. В. Томашевский, Д. Н. Ушаков ; под ред. Д. Н. Ушакова. — М. : Государственный институт «Советская энциклопедия» (т. 1) : ОГИЗ (т. 1) : Государственное издательство иностранных и национальных словарей (т. 2—4), 1935—1940.
  5. Download – A Short History to Weighing: AWTX Museum Book (недоступная ссылка). Averyweigh-tronix.com. Дата обращения: 5 марта 2015. Архивировано 2 марта 2012 года.
  6. A Practical Dictionary of the English and German Languages (1869), p. 1069.
  7. Весы (прибор) — статья из Большой советской энциклопедии
  8. :Ж.р., одна буква «л» согласно «Русскому орфографическому словарю» РАН. (недоступная ссылка). Дата обращения: 4 июля 2012. Архивировано 4 августа 2012 года.
  9. Павлов, 2006.
  10. ГОСТ Р 53228-2008 - скачать бесплатно. www.gosthelp.ru. Дата обращения: 2 марта 2016.
  11. 1 2 Applying air buoyancy corrections (недоступная ссылка). Andrew.ucsd.edu (September 29, 1997). Дата обращения: 5 марта 2014. Архивировано 7 сентября 2006 года.

Литература[ | код]

Реклама