Реклама


Белок-белковые взаимодействия

Белок-белковое взаимодействие подковообразного ингибитора рибонуклеазы (показана каркасная модель) с рибонуклеазой. Контакты между двумя белками показаны цветными пятнами

Белок-белковые взаимодействия (ББВ) — обладающие высокой специфичностью физические контакты между двумя и более белками. Эти контакты образуются в результате биохимических событий с помощью электростатических взаимодействий, в том числе гидрофобного эффекта[en][1].

Белки — важные макромолекулы как для внутриклеточных, так и для внешних процессов. Белки редко действуют в одиночку: для участия в различных жизненно важных процессах внутри клетки эти макромолекулы с помощью белок-белковых взаимодействий собираются в мультибелковые комплексы. Белок-белковые взаимодействия составляют основу интерактома любой живой клетки[1]. Они участвуют в таких важных клеточных процессах, как передача сигнала, клеточное общение, транскрипция, репликация, мембранный транспорт и другие. Поэтому неудивительно, что нарушения этих взаимодействий приводят ко многим заболеваниям, таким как болезнь Крейтцфельдта — Якоба, болезнь Альцгеймера и рак[2].

Не все белок-белковые взаимодействия образуются раз и навсегда. Часть белков входит в состав стабильных комплексов, которые являются молекулярными машинами (например, АТФ-синтаза или цитохромоксидаза). Другие же белки собираются обратимо для осуществления какой-либо временной функции (например, для активации экспрессии генов в случае с транскрипционными факторами и активаторами)[1].

Белок-белковые взаимодействия рассматриваются со стороны биохимии, квантовой химии, молекулярной динамики, передачи сигналов в клетке[3]. Полученная информация позволяет создавать обширные сети белковых взаимодействий, похожих на метаболические или генетические/эпигенетические связи. Это расширяет текущие знания о биохимических каскадах и патогенезе заболеваний, а также открывает новые возможности для поиска новых терапевтических мишеней.

Содержание

Типы белок-белковых взаимодействий[ | код]

Белки могут «временно» связываться друг с другом или же образовывать «стабильные» мультибелковые комплексы. При этом белковые комплексы могут быть как гетеро-, так и гомоолигомерными. Классическими примерами ББВ являются взаимодействия фермент-ингибитор и антитело-антиген, но помимо них ББВ могут возникать между двумя доменами или же доменом и пептидом[1].

Гомо- и гетероолигомеры[ | код]

Гомоолигомеры — макромолекулярные комплексы, состоящие только из одного типа белковых субъединиц. Если же связь образуется между неидентичными белковыми цепями, то образуется гетероолигомер. Гетероолигомеры разнятся по своей стабильности, а для большинства гомоолигомерных комплексов характерна симметричность и стабильность. Разборка гомоолигомеров зачастую требует денатурации[4]. Некоторые ферменты, транспортные белки, факторы транскрипции выполняют свою функцию будучи гомоолигомерами. Взаимодействия между разными белками играют большую роль в клеточной передаче сигналов.

Обязательные и необязательные взаимодействия[ | код]

Для разделения ББВ на обязательные и необязательные нужна информация о стабильности участвующих во взаимодействии белков (мономеров) в свободном состоянии и в составе белкового комплекса. Если мономеры стабильны in vivo только в составе комплекса, то взаимодействие между ними является обязательным. В результате обязательных взаимодействий формируются обязательные или облигатные комплексы. Если же белки могут существовать независимо, то они участвуют в необязательных ББВ. Большинство макромолекулярных машин в клетке являются примерами обязательных взаимодействий[2]. К обязательным комплексам относятся человеческий катепсин D и димер ДНК связывающего белка P22 Arc repressor, а необязательных взаимодействий — взаимодействие RhoA с RhoGAP и тромбина со своим ингибитором родниином[5].

Постоянные и временные взаимодействия[ | код]

ББВ можно разделить по времени жизни комплекса. Постоянные взаимодействия обычно очень стабильны: белки, взаимодействуя, образуют постоянныей комплекс. Они часто присутствуют в гомоолигомерах (например, Цитохром с) и в некоторых гетероолигомерах (например, субъединицы АТРазы). Временные взаимодействия постоянно образуются и разрушаются. Они могут возникать при взаимодействии гормона с рецептором, передаче клеточного сигнала. Такой тип взаимодействия широко распространён в сигнальных и регуляторных путях[2].

Ковалентные и нековалентные взаимодействия[ | код]

Ковалентные связи — наиболее прочные и образуются в случае обмена электронами (например, дисульфидные связи). Хотя эти связи редко встречаются при белок-белковых взаимодействиях, в некоторых посттрансляционных модификациях они являются определяющими (например, убиквитирование и навешивание SUMO белков). Нековалентные связи обычно образуются во временных взаимодействиях за счет комбинаций слабых связей: водородных, ионных, ван-дер-ваальсовых или гидрофобных[6].

Переход из неструктурированного в структурированное состояние[ | код]

Отдельно можно выделить ББВ, которые образуются частично неструктурированными белками[en]. В таких белках есть участки, аминокислотная последовательность которых не позволяет образовать стабильной третичной структуры. Эти белки могут взаимодействать с другими, подбирая подходящую конформацию для образования связи с партнёром[2].

Трёхмерная структура белковых комплексов[ | код]

Молекулярные структуры многих белковых комплексов были разрешены с помощью рентгеноструктурного анализа[7][8]. Первой такой структурой был миоглобин кашалота[9]. Позднее для определения трёхмерной структуры белковых комплексов также стали применять ЯМР. Так, например, одной из первых была получена структура кальмодулин-связанных доменов, взаимодействующих с кальмодулином[8][10]. Этот метод хорошо подходит для определения слабых белок-белковых взаимодействий[11].

Домены[ | код]

Благодаря развитию методов разрешения трёхмерной структуры белков удалось выделить структурные домены, которые участвуют в образовании ББВ. Такими, например, являются:

Биологические эффекты белок-белковых взаимодействий[ | код]

Белок-белковые взаимодействия играют важную роль во многих биологических процессах. Функция и активность белка в большинстве случаев изменяются при связывании с белками-партнёрами. Они могут оказывать значительное влияние на кинетические параметры фермента за счёт аллостерического эффекта, приводить к его инактивации (например, при связывании фермента с ингибитором) или к изменению специфичности фермента к своему субстрату[13].

Помимо этого, взаимодействие белков друг с другом может приводить к формированию нового сайта связывания для субстрата на поверхности взаимодействия двух молекул. За счёт взаимодействия двух или более ферментов друг с другом становится возможным туннелирования субстрата[en], что увеличивает эффективность ферментативных реакций за счёт стабилизации интермедиатов и повышения их локальной концентрации[13].

Методы изучения белок-белковых взаимодействий[ | код]

Существует множество методов изучения белок-белковых взаимодействий[13]. Некоторые из них позволяют экспериментально определять белки-партнёры для изучаемого белка, другие — лишь верифицировать возможное взаимодействие двух белков. Для подтверждения партнёрства двух белков используется бимолекулярная флуоресцентная комплементация (BiFC), FRET-методы, Far-Western, дрожжевая двугибридная система. Для решения задачи обнаружения белков-партнёров используется коиммунопреципитация с последующей аффинной хроматографией и масс-спектрометрией, система AviTag с промискуитетной BirA-лигазой. Основной проблемой в применении данных методов является возможная неспецифичность белка, который определился как входящий в состав белкового комплекса.

Дрожжевой двугибридный анализ[ | код]

Принципы в основе двугибридных систем для дрожжей и млекопитающих

Двугибридные дрожжи позволяют in vivo выявлять парные ББВ (бинарный метод), а также неспецифичные липкие взаимодействия (sticky interactions)[14].

Клетки дрожжей трансфецируются двумя плазмидами: наживкой — интересующим нас белком с прилинкованным ДНК-связывающим доменом дрожжевого фактора транскрипции, например Gal4, и добычей — библиотекой кДНК (cDNA) фрагментов, прикреплённых к активирующему домену транскрипционного фактора. Если добыча и наживка взаимодействуют, два домена транскрипционного фактора соединяются и становятся функциональными. Таким образом, по присутствию результатов продукции репортерного гена можно судить о наличии взаимодействия между белками[6][15].

Несмотря на всю полезность, у дрожжевой двугибридной системы имеется ряд ограничений: относительно низкая специфичность; использование дрожжей в качестве основного хозяйского организма, что может приводить к проблемам при исследовании других биологических систем; относительно низкое количество обнаруживаемых ББВ, поскольку некоторые белки со слабыми связями теряются в процессе выделения[16] (к примеру, плохо обнаруживаются мембранные белки[17][18]). Ограничения преодолеваются использованием различных вариантов двугибридной системы, например мембранным дрожжевым двугибридом (membrane yeast two-hybrid)[18], сплит-убиквитиновыми системами[15], которые не ограничены взаимодействиями только внутри ядра; и бактериальными двугибридными системами (с ипользованием бактерий, соответственно)[19].

Афинная хроматография с последующей масс-спектрометрией[ | код]

Принцип тандемной аффиной хроматографии

Аффинная хроматография с последующей масс-спектрометрией позволяет обнаруживать, в основном, стабильные взаимодействия, тем самым лучше отражая функциональные ББВ, существующие в живой клетке (in vivo)[14][15]. При использовании этого метода сначала выделяют помеченный белок, экспрессируемый в клетке обычно в in vivo концентрациях, и взаимодействующие с ним белки (афинная хроматография). Один из наиболее выигрышных и широко используемых методов для выделения протеинов в случае сильного фонового загрязнения — это метод тандемной афинной хроматографии[en]. ББВ могут быть качественно и количественно проанализированы различными масс-спектрометрическими методами: химическим слиянием, биологическим или метаболическими слиянием (SILAC), или методами без использования меток[4].

Вычислительные способы предсказания ББВ[ | код]

Так как до сих пор нет полных данных интерактома и не все ББВ обнаружены, при реконструкции сигнальных или метаболических карт взаимодействий используют различные вычислительные методы. Они позволяют устранить пробелы, предсказывая наличие тех или иных взаимодействий между узлами сети. С помощью вычислительных методов можно предсказать не только возможность ББВ, но также и их силу[2].

Ниже приведено несколько вычислительных подходов предсказания ББВ:

Базы белок-белковых взаимодействий[ | код]

Крупномасштабные поиски ББВ позволили выявить сотни тысяч взаимодействий, информация о которых была собрана в специализированных биологических базах данных (БД). Эти базы постоянно обновляются с целью предоставить полный интерактом. Первой такой базой стала База Данных Взаимодействующих Белков(DIP)[en][26]. С момента её появления число публичных баз данных продолжает расти. Эти БД можно разделить на три класса: первичные, мета-БД и БД предсказаний[1].

Сети белок-белковых взаимодействий[ | код]

Визуализация интерактома человека, где точки обозначают белки, а соединяющие их синие линии — взаимодействия между белками

Информация, содержащаяся в базах ББВ, позволяет строить сети белковых взаимодействий. Сеть ББВ для одного конкретного белка вполне возможно описать, например, с помощью текста. Но задача создания диаграммы всевозможных внутриклеточных ББВ поистине сложна и трудноизобразима. Одним из примеров вручную созданной молекулярной карты взаимодействий является карта контроля клеточного цикла, созданная Куртом Коном (Kurt Kohn) в 1999 году[27]. Базируясь на карте Кона, Швиковски (Schwikowski) и др. в 2000 году опубликовали карту ББВ в дрожжах, объединившую 1548 взаимодействующих протеина, информация о которых была получена методом двугибридного анализа. При визуализации для первоначального расположения вершин использовался метод послойного изображения графа, а затем полученное изображение было улучшено за счет применения силового (force based) алгоритма[28][29].

Чтобы упростить сложную задачу визуализации, были разработаны различные биоинформатические инструменты, которые также позволяют сочетать информацию о ББВ с другими типами данных. К примеру, широко используется пакет с открытым исходным кодом Cytoscape, к которому доступна масса плагинов[1][30]. Для визуализации и анализа очень больших сетей подходит пакет Pajek[31].

Важная роль ББВ в физиологических и патологических процессах является хорошей мотивацией для расширения интерактома. В качестве примеров уже опубликованных интерактомов можно привести thyroid-специфичный интерактом DREAM[32] и PP1α-интеракто в человеческом мозге[33].

Примечания[ | код]

  1. 1 2 3 4 5 6 7 8 9 De Las Rivas, J.; Fontanillo, C. (2010). “Protein-protein interactions essentials: key concepts to building and analyzing interactome networks”. PLoS computational biology. 6 (6): e1000807. PMID 20589078. Используется устаревший параметр |coauthors= (справка)
  2. 1 2 3 4 5 6 7 8 9 10 Keskin, O.; Tuncbag, N; Gursoy, A. (2016). “Predicting Protein–Protein Interactions from the Molecular to the Proteome Level”. Chemical Reviews. 116 (8): 4884–4909. PMID 27074302. Используется устаревший параметр |coauthors= (справка)
  3. Herce, H.D.; Deng, W.; Helma, J.; Leonhardt, H.; Cardoso, M.C. (2013). “Visualization and targeted disruption of protein interactions in living cells”. Nature Communications. 4: 2660. PMID 24154492. Используется устаревший параметр |coauthors= (справка)
  4. 1 2 Jones, S.; Thornton, J.M. (1996). “Principles of protein-protein interactions”. Proceedings of the National Academy of Sciences of the United States of America. 93 (1): 13—20. PMID 8552589. Используется устаревший параметр |coauthors= (справка)
  5. Nooren, I.M.; Thornton, J.M. (2003). “Diversity of protein-protein interactions”. EMBO J. 22 (14): 3486–3492. PMID 12853464. Используется устаревший параметр |coauthors= (справка)
  6. 1 2 Westermarck, J.; Ivaska, J.; Corthals, G.L. (2013). “Identification of protein interactions involved in cellular signaling”. Molecular & cellular proteomics : MCP. 12 (7): 1752—63. PMID 23481661. Используется устаревший параметр |coauthors= (справка)
  7. Janin J., Chothia C. The structure of protein-protein recognition sites. (англ.) // The Journal of biological chemistry. — 1990. — Vol. 265, no. 27. — P. 16027—16030. — PMID 2204619.
  8. 1 2 Bruce, A. Molecular biology of the cell / A. Bruce, Johnson, Lewis … [и др.]. — 4th. — New York : Garland Science, 2002. — ISBN 0-8153-3218-1.
  9. Kendrew, J.C.; Bodo, G.; Dintzis, H.M.; Parrish, R.G.; Wyckoff, H.; Phillips, D.C. (1958). “A three-dimensional model of the myoglobin molecule obtained by x-ray analysis”. Nature. 181 (4610): 662—6. PMID 13517261. Используется устаревший параметр |coauthors= (справка)
  10. Wand, A.J.; Englander, SW (1996). “Protein complexes studied by NMR spectroscopy”. Current opinion in biotechnology. 7 (4): 403—8. PMID 8768898. Используется устаревший параметр |coauthors= (справка)
  11. Vinogradova, O.; Qin, J. (2012). “NMR as a unique tool in assessment and complex determination of weak protein-protein interactions”. Topics in current chemistry. 326: 35—45. PMID 21809187. Используется устаревший параметр |coauthors= (справка)
  12. Berridge, M.J. (2012). “Cell Signalling Biology: Module 6 – Spatial and Temporal Aspects of Signalling”. Biochemical Journal. DOI:10.1042/csb0001006.
  13. 1 2 3 Phizicky E. M., Fields S. Protein-protein interactions: methods for detection and analysis. (англ.) // Microbiological reviews. — 1995. — Vol. 59, no. 1. — P. 94—123. — PMID 7708014.
  14. 1 2 Brettner L. M., Masel J. Protein stickiness, rather than number of functional protein-protein interactions, predicts expression noise and plasticity in yeast. (англ.) // BMC systems biology. — 2012. — Vol. 6. — P. 128. — DOI:10.1186/1752-0509-6-128. — PMID 23017156.
  15. 1 2 3 Wodak, S.J.; Vlasblom, J.; Turinsky, A.L.; Pu, S. (2013). “Protein-protein interaction networks: the puzzling riches”. Current opinion in structural biology. 23 (6): 941—53. PMID 24007795. Используется устаревший параметр |coauthors= (справка)
  16. Rajagopala, S.V.; Sikorski, P.; Caufield, J.H.; Tovchigrechko, A.; Uetz, P. (2012). “Studying protein complexes by the yeast two-hybrid system”. Methods. 58 (4): 392—9. PMID 22841565. Используется устаревший параметр |coauthors= (справка)
  17. Stelzl, U.; Wanker, E.E. (2006). “The value of high quality protein-protein interaction networks for systems biology”. Current opinion in chemical biology. 10 (6): 551—8. PMID 17055769. Используется устаревший параметр |coauthors= (справка)
  18. 1 2 Petschnigg, J.; Snider, J.; Stagljar, I. (2011). “Interactive proteomics research technologies: recent applications and advances”. Current opinion in biotechnology. 22 (1): 50—8. PMID 20884196. Используется устаревший параметр |coauthors= (справка)
  19. Battesti, A; Bouveret, E (2012). “The bacterial two-hybrid system based on adenylate cyclase reconstitution in Escherichia coli”. Methods. 58 (4): 325—34. PMID 22841567. Используется устаревший параметр |coauthors= (справка)
  20. Enright, A. J.; Iliopoulos, I.; Kyrpides, N.C.; Ouzounis, C.A. (1999). “Protein Interaction Maps for Complete Genomes Based on Gene Fusion Events”. Nature. 402 (6757): 86–90. PMID 10573422. Используется устаревший параметр |coauthors= (справка)
  21. Pazos, F.; Valencia, A. (2001). “Similarity of Phylogenetic Trees as Indicator of Protein-Protein Interaction”. Protein Eng., Des. Sel. 14 (9): 609–614. PMID 11707606. Используется устаревший параметр |coauthors= (справка)
  22. Jansen, R.; IGreenbaum, D.; Gerstein, M. (2002). “Relating Whole- Genome Expression Data with Protein-Protein Interactions”. Genome Res. 12 (1): 37–46. PMID 11779829. Используется устаревший параметр |coauthors= (справка)
  23. Pazos, F.; Valencia, A. (2002). “In Silico Two-Hybrid System for the Selection of Physically Interacting Protein Pairs”. Proteins: Struct., Funct., Genet. 47 (2): 219–227. PMID 11933068. Используется устаревший параметр |coauthors= (справка)
  24. Shen, J.; IZhang, J.; Luo, X.; Zhu, W.; Yu, K.; Chen, K.; Li, Y.; Jiang, H. (2007). “Predicting protein-protein interactions based only on sequences information”. Proc. Natl. Acad. Sci. U. S. A. 104 (11): 4337–4341. PMID 17360525. Используется устаревший параметр |coauthors= (справка)
  25. Papanikolaou, N.; Pavlopoulos, G.A.; Theodosiou, T.; Iliopoulos, I. (2015). “Protein-protein interaction predictions using text mining methods”. Methods. 74: 47—53. PMID 25448298. Используется устаревший параметр |coauthors= (справка)
  26. Xenarios I., Rice D. W., Salwinski L., Baron M. K., Marcotte E. M., Eisenberg D. DIP: the database of interacting proteins. (англ.) // Nucleic acids research. — 2000. — Vol. 28, no. 1. — P. 289—291. — PMID 10592249.
  27. Schwikowski B., Uetz P., Fields S. A network of protein-protein interactions in yeast. (англ.) // Nature biotechnology. — 2000. — Vol. 18, no. 12. — P. 1257—1261. — DOI:10.1038/82360. — PMID 11101803.
  28. Rigaut G., Shevchenko A., Rutz B., Wilm M., Mann M., Séraphin B. A generic protein purification method for protein complex characterization and proteome exploration. (англ.) // Nature biotechnology. — 1999. — Vol. 17, no. 10. — P. 1030—1032. — DOI:10.1038/13732. — PMID 10504710.
  29. Prieto C., De Las Rivas J. APID: Agile Protein Interaction DataAnalyzer. (англ.) // Nucleic acids research. — 2006. — Vol. 34. — P. 298—302. — DOI:10.1093/nar/gkl128. — PMID 16845013.
  30. Michael Kohl, Sebastian Wiese, and Bettina Warscheid (2011) Cytoscape: Software for Visualization and Analysis of Biological Networks. In: Michael Hamacher et al. (eds.), Data Mining in Proteomics: From Standards to Applications, Methods in Molecular Biology, vol. 696, DOI 10.1007/978-1-60761-987-1_18
  31. Raman, K. (2010). “Construction and analysis of protein-protein interaction networks”. Automated experimentation. 2 (1): 2. PMID 20334628.
  32. Rivas, M.; Villar, D.; González, P.; Dopazo, X.M.; Mellstrom, B.; Naranjo, J.R. (2011). “Building the DREAM interactome”. Science China. Life sciences. 54 (8): 786—92. PMID 21786202. Используется устаревший параметр |coauthors= (справка)
  33. Esteves, S.L.; Domingues, S.C.; da Cruz e Silva, O.A.; Fardilha, M.; da Cruz e Silva, E.F. (2012). “Protein phosphatase 1α interacting proteins in the human brain”. Omics : a journal of integrative biology. 16 (1–2): 3—17. PMID 22321011. Используется устаревший параметр |coauthors= (справка)

Ссылки[ | код]

Реклама